If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6q^2+6q=0
a = 6; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·6·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*6}=\frac{-12}{12} =-1 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*6}=\frac{0}{12} =0 $
| 7x-(-13)=20 | | 7(x-5)=6(x-2) | | 8d=9d-5 | | 2.5x-4=x+5 | | 9p^2=2 | | 8d=9d−5 | | -9r-5=9-7r | | 1=t-10/2 | | 14x-30=2(7x-15) | | 3(g+11)=9 | | -12=6/5x | | 3p^2+p+8=0 | | 8b=9+5b | | 5y^2-6y+6=0 | | 13d−3d=20 | | 7x+9=7x | | 9/5a(a-5)=40 | | -3u=-2u-8 | | 5+r=22 | | 4y+3(-3y)=10 | | x+15)/2=13 | | -3-8(n+40)=-91 | | 5q=4q+4 | | 7(2y-8)=24 | | -3-8(n+40=-91 | | 6–3x=15+4x | | 3v^2+5v+1=0 | | 44=2x-6x | | 6r=8r+10 | | 4t^2-9t+8=0 | | 164=4(-7n-8) | | 3(3x+1)=7x |